引言
DeepSpeed 是一个由 Microsoft 开发的深度学习开源优化工具,它横跨模型训练、推理和模型压缩等领域。在本文中,我将只关注与训练相关的优化,而推理和压缩部分将留待今后探讨。如前文所述,我们可以通过在多个设备上复制整个模型(数据并行 Data Parallelism)或将模型拆分,并将其不同部分存储在不同设备上(模型并行 Model Parallelism / 流水线并行 Pipeline Parallelism)来执行分布式训练。一般来说,DP 比 MP 的计算效率更高;但是,如果模型太大,单个 GPU 设备的可用显存无法容纳,那么只能使用模型并行。
...大约 14 分钟